
PROGRAMMING FOR BUSINESS

COMPUTING

商管程式設計

Functions and fruitful functions

Hsin-Min Lu

盧信銘

台大資管系

2017-10-16 1Programming for Business Computing

Programming for Business Computing 2

Functions

• A function is a named sequence of statements that
performs a computation.

• To use a function, you need to:
• Define the function, and

• Call the function by its name

• You can pass input variables (i.e., arguments) to the function.

• ☼

2017-10-16

A Function
Input variables

(arguments) Return values

Programming for Business Computing 3

More About Functions

• Python has many useful built-in functions

• The correct verb for using a function is “call” or “invoke.” (

呼叫、執行) ☼

2017-10-16

• Print the Lyrics of “Five Little Ducks”

• #Five little ducks
print("Five little ducks went out one day")
print("Over the hills and far away")
print("Mother duck said quack quack quack")
print("But only four little ducks came back")
print()
print("Four little ducks went out one day")
print("Over the hills and far away")
print("Mother duck said quack quack quack")
print("But only three little ducks came back")
print()
print("Three little ducks went out one day")
print("Over the hills and far away")
print("Mother duck said quack quack quack")
print("But only two little ducks came back")

2017-10-16 Programming for Business Computing 4

Let’s Start with a Song

☼

Five little ducks went out one day
Over the hills and far away
Mother duck said quack quack quack
But only four little ducks came back

Four little ducks went out one day
Over the hills and far away
Mother duck said quack quack quack
But only three little ducks came back

Three little ducks went out one day
Over the hills and far away
Mother duck said quack quack quack
But only two little ducks came back

2017-10-16 Programming for Business Computing 5

Output of the Small Program

☼

• Notice that there are a lot of duplications…

• The second and third lines have repeated for three times.

• …

print("Over the hills and far away")

print("Mother duck said quack quack quack")

…

• We can define the function for these two lines.

• def over_mother():

print("Over the hills and far away")

print("Mother duck said quack quack quack")

• Now the program become shorter…

2017-10-16 Programming for Business Computing 6

How can we do better?

☼

2017-10-16 Programming for Business Computing 7

Five Little Ducks, Version 2

#Five little ducks, v2

def over_mother():

print("Over the hills and far away")

print("Mother duck said quack quack quack")

print("Five little ducks went out one day")

over_mother()

print("But only four little ducks came back")

print()

print("Four little ducks went out one day")

over_mother()

print("But only three little ducks came back")

print()

print("Three little ducks went out one day")

over_mother()

print("But only two little ducks came back")

☼

• Still, the first line of each part is very similar.
• Five little ducks went out one day

• Four little ducks went out one day

• Three little ducks went out one day

• We can define a function that output the three similar lines:
• def n_ducks(num):

print("%s little ducks went out one day" % num)

• Do the same for the last line:
• def only_n(num):

print("But only %s little ducks came back" % num)

2017-10-16 Programming for Business Computing 8

How Far Can We Go?

☼

• When you define a function, you can allow the function to take
input variables.

• The “place” to receive input variables are “parameters.”

• For example,
• def n_ducks(num):

print("%s little ducks went out one day" % num)

• “num” is a parameter that can receive input variables.

• We assign the value of “num” by passing a “argument” to it. For
example,

• n_ducks("Five")

• "Five" is a argument (input value).

• The variable num will be assign with the value “Five.”

2017-10-16 Programming for Business Computing 9

Arguments and Parameters

☼

2017-10-16 Programming for Business Computing 10

Five Little Ducks, Version 3
#Five little ducks, v3

def over_mother():

print("Over the hills and far away")

print("Mother duck said quack quack quack")

def n_ducks(num):

print("%s little ducks went out one day" % num)

def only_n(num):

print("But only %s little ducks came back" % num)

n_ducks("Five")

over_mother()

only_n("Four")

print()

n_ducks("Four")

over_mother()

only_n("Three")

print()

n_ducks("Three")

over_mother()

only_n("Two")

☼

• We can further define a new function that combines the three
functions.

• We need two parameters, for the first and last lines.

• def sing_unit(num1, num2):

n_ducks(num1)

over_mother()

only_n(num2)

• Now we can print out the lyrics by:

• sing_unit("Five", "Four")

print()

sing_unit("Four", "Three")

print()

sing_unit("Three", "Two")

2017-10-16 Programming for Business Computing 11

And More…

☼

• At the point of calling, the original program suspended

execution.

• The parameters of the function are assigned to the values

of arguments.

• Execute the body of the function.

• Control return to the original point just after where the

function was called.

2017-10-16 Programming for Business Computing 12

What Happens When You Call a Function?

☼

2017-10-16 Programming for Business Computing 13

Calling a Function

sing_unit("Five", "Four")

def sing_unit(num1, num2):

n_ducks(num1)

over_mother()

only_n(num2)

def over_mother():

print("Over the hills and far away")

print("Mother duck said quack quack quack")

def only_n(num):

print("But only %s little ducks came back" % num)

num1: “Five”, num2: “Four”

def n_ducks(num):

print("%s little ducks went out one day" % num)

num: “Five”

☼

The indentation matters…

First line with less

indentation is considered to be

outside of the function definition.

Indentation (縮排) can be spaces or tabs.

Need to be consistent!

Defining Functions

def get_result(var1, var2):

“““Compute final result.”””
line1

line2

return total_counter

Function definition begins with “def.” Function name and its parameters.

The keyword ‘return’ indicates the

value to be sent back to the caller. ☼

Colon.

2017-10-16 Programming for Business Computing 14

Provide

documentation

about this function.

☼

• A function can have multiple parameters.

• You can assign default values to some of these parameters.

• def print_msg(item, ndays=30):

print("Please return %s in %d days" % (item, ndays))

print_msg("items")

print_msg("items", 50)

• Output:

2017-10-16 Programming for Business Computing 15

Default Arguments

☼

• You can use parameter names when calling a function.

• When parameter names are used, the order of arguments

does not matter.

• def print_msg(item, ndays=30):

print("Please return %s in %d days" % (item, ndays))

2017-10-16 Programming for Business Computing 16

Calling with Parameter Names

☼

• Parameters and variables defined within a function are

local (區域變數).

• Local variables only exist inside the function.

• Variables defined on the outer part of a py file are called

global variables (全域變數). You can access the global

variables within a function.

• The only way for a function to see a variable from another

function is for that variable to be passed as a parameter.

2017-10-16 Programming for Business Computing 17

Scope of Variables and Parameters

☼

• Consider the scenario that we are creating a function

named “give_total” that compute the total amount due for

a product.

• “give_total” takes only one input, n, which is the number

of product purchased.

• Assume that the unit price of the product is $1.2.

• def give_total(n):

unitp = 1.2

total = unitp * n

return total

2017-10-16 Programming for Business Computing 18

Local and Global Variables

☼

• We cannot access unitp outsize of the function:

• Because: unitp is a local variable that live inside the

“give_total” function.

• How about we define a global variable of the same name?

• Can we overwrite the local unitp?

• No, you cannot!

2017-10-16 Programming for Business Computing 19

Local and Global Variables (Cont’d)

☼

• On the other hand, you can have read only access of global
inside a function.

• Assume that we have a global variable weekend that tell us
whether today is weekend.

• def give_total(n):
print("Weekend=%d" % weekend)
unitp = 1.2
total = unitp * n
return total

weekend = True
m=give_total(5)

• Execution result: Weekend=1

2017-10-16 Programming for Business Computing 20

Local and Global Variables (Cont’d)

☼

• If you need to change the value of weekend inside a

function, you need to use the “global” keyword to declare

that this is a global variable.

• Otherwise, outside world will not see the changes.

2017-10-16 Programming for Business Computing 21

Local and Global Variables (Cont’d)

☼

• #give_total, v2

def give_total(n):

unitp = 1.2

weekend = False

print("New Weekend=%d" % weekend)

total = unitp * n

return total

weekend = True

print("Outside, before calling: Weekend=%d" % weekend)

m1=give_total(5)

print("Outside: Weekend=%d" % weekend)

• Result:

2017-10-16 Programming for Business Computing 22

Example: Changing Global Variable

☼

• def give_total(n):

global weekend

print("Weekend=%d" % weekend)

unitp = 1.2

weekend = False

print("New Weekend=%d" % weekend)

total = unitp * n

return total

2017-10-16 Programming for Business Computing 23

Example: The “global” keyword

☼

• Function can provide output variables to its caller.

• Act just like functions in mathematics.

• You can “chain” the output to the input.

• Think about the give_total function we encountered.

• def give_total(n):

unitp = 1.2

total = unitp * n

return total

• This function returns the total amount due for a purchase.

2017-10-16 Programming for Business Computing 24

Return Values of Functions

A Function
Input variables

(arguments) Return values

☼

Programming for Business Computing 25

Return Values of Functions (Cont’d.)

• def give_total(n):

unitp = 1.2

total = unitp * n

return total

• When return are reached, Python leaves the
function and gives the control back to the caller of
the function.

• Moreover, Python sends back the values
provided in the return statement as the
execution results. ☼

2017-10-16

2017-10-16 Programming for Business Computing 26

Additional Execution Example

☼

Programming for Business Computing 27

Returning Many Values

• Compute the minimum and maximum of four input

variables.
• def min_max(x1, x2, x3, x4):

r1 = min(x1, x2, x3, x4)

r2 = max(x1, x2, x3, x4)

return r1, r2

a1=input("Provide input value a1:")

a2=input("Provide input value a2:")

a3=input("Provide input value a3:")

a4=input("Provide input value a4:")

out1, out2 = min_max (a1, a2, a3, a4)

print("Minimal =", out1)

print("Maximal =", out2)

• Here out1 gets the first value and out2 gets the second.

2017-10-16

☼

• First attempt:

• Second attempt:

• Wait! Something is wrong… 哪裡怪?

2017-10-16 Programming for Business Computing 28

Let’s Try This Out!

☼

• Run the program in interactive mode.

• In notepad++, Press F5 (or “Run””Run”), and enter the

following commands:

• python3 -u -i "$(FULL_CURRENT_PATH)"

• In cmd, use this:

python3 -u -i “your_program.py”

• Cause: a1, a2, a3, a4 are strings.

• The rule to compare strings is

different from floats.

2017-10-16 Programming for Business Computing 29

Happy Debugging…

☼

• Convert to float!

• def min_max(x1, x2, x3, x4):

r1 = min(x1, x2, x3, x4)

r2 = max(x1, x2, x3, x4)

return r1, r2

a1=input("Provide input value a1:")

a2=input("Provide input value a2:")

a3=input("Provide input value a3:")

a4=input("Provide input value a4:")

out1, out2 = min_max (float(a1), float(a2), float(a3), float(a4))

• print("Minimal =", out1)

print("Maximal =", out2)

2017-10-16 Programming for Business Computing 30

How to Fix the Bug?

☼

• Consider the previous example:

• Additional testing:

2017-10-16 Programming for Business Computing 31

Now We are Good!

☼

Programming for Business Computing 32

Function Return Values

• Question: What will happen if your function does not have

the “return” keyword?

• Answer: Python will still execute your function until the

end.

• All Python functions return a value.

• If you did not provide the return value, Python will hand

back a special object, denoted None.

• A common bug is writing a value-returning function and
omitting the return! ☼

2017-10-16

☼

def myabs(x):

if x< 0:

return -x

if x> 0:

return x

print(myabs(-3.5))

print(myabs(0))

2017-10-16 33

Example Code

What will be the result of

the function calls?

Programming for Business Computing

☼

• myabs(-3.5) gives 3.5

• myabs(0) gives None!

• What is going on?

• myabs does not handle the case x=0 !!!

• How do we fix it?

2017-10-16 34

Example Code (Cont’d.)

Programming for Business Computing

def myabs(x):
if x< 0:

return -x
if x>= 0:

return x

print(myabs(-3.5))
print(myabs(0))

☼

Programming for Business Computing 35

Arguments and Return Values

• We use return values to send information back to
the caller of a function.

• Question: Can we send back information using
arguments (the inputs of functions)?
• It depends.

• Different programming languages have different
designs.

• Some languages such as C or C++ can use the
so call “Call by Reference” approach to send
back information using arguments.

• Another approach is “Call by Value.”
• Make copies of all input arguments before passing them

into a function.

2017-10-16

☼

• The detailed mechanisms are too complicated for

beginners.

• We will focus on the consequence of this design.

• Simply put, it depends on whether the argument is

immutable or mutable.

• First, we need to know that there are two types of objects

in Python: immutable and mutable.

• Example of immutable objects: string, int, float

• Also: decimal, complex, bool, tuple, range, frozenset, bytes

• Example of mutable objects: list

• Also: dict, set, bytearray, user-defined classes.

2017-10-16 Programming for Business Computing 36

Python’s Call by Assignment

☼

Programming for Business Computing 37

Mutable and Immutable Objects

• Lists are mutable, meaning they can be changed.
Strings can not be changed.

>>> myList = [34, 26, 15, 10]
>>> myList[2]
15
>>> myList[2] = 0
>>> myList
[34, 26, 0, 10]
>>> myString = "Hello World"
>>> myString[2]
'l'
>>> myString[2] = "p"

Traceback (most recent call last):
File "<pyshell#16>", line 1, in -toplevel-
myString[2] = "p"

TypeError: object doesn't support item assignment

2017-10-16

☼

• Outside world cannot see changes made to immutable

objects inside the function.

• Similar to “call by value.”

• def swap1(x1, x2):

tmp=x1

x1=x2

x2=tmp

print("Inside swap1: x1=", x1, "x2=", x2)

x1, x2 = 100, 5

print("Outside: x1=", x1, "x2=", x2)

swap1(x1, x2)

print("Outside: x1=", x1, "x2=", x2)

• Output:

2017-10-16 Programming for Business Computing 38

Passing in Immutable Objects

☼

• Outside world can see changes made to mutable objects

inside the function.

• Similar to “call by reference.”

• def swap2(xlist):

tmp=xlist[0]

xlist[0] = xlist[1]

xlist[1] = tmp

print("Inside swap2: xlist=", xlist)

xlist = [100, 5]

print("Outside: xlist=", xlist)

swap2(xlist)

print("Outside: xlist=", xlist)

• Output:

2017-10-16 Programming for Business Computing 39

Passing in Mutable Object

☼

• In mathematics, the factorial of a non-negative integer n, denoted by
n!, is the product of all positive integers less than or equal to n.
• For example, 5!=5x4x3x2x1=120

• Factorial can be defined recursively:

• 0! = 1

• 𝑛! = 𝑛 × 𝑛 − 1 !

• Now, how do we create our own factorial function?

def factorial(n):

if n == 0:

return 1

else:

recurse = factorial(n-1)

result = n * recurse

return result

2017-10-16 40

Recursion for factorial function

Programming for Business Computing

Example from Section 6.5 of

Think Python, Version 2.2.17☼

• When we run “factorial(3)”
• Since 3 is not 0, call factorial(2)

• In factorial(2): since 2 is not 0, call factorial(1)

• In factorial(1): since 1 is not 0, call factorial(0)

• In factorial(0): return 0

2017-10-16 41

Recursion: factorial(3)

Programming for Business Computing

def factorial(n):

if n == 0:

return 1

else:

recurse = factorial(n-1)

result = n * recurse

return result

Figure 6.1 of

Think Python ☼

2017-10-16 42

Handling Illegal Inputs
• What will happen if we call factorial(1.5)?

• RuntimeError: maximum recursion depth exceeded in cmp

• Why? Because we encounter an infinite recursion because n will never be 0.

• Also negative values should not be allowed.

• Need to check for valid input  Create guardian (門神)

def factorial(n):
if not isinstance(n, int):

print('Factorial is only defined for integers.')
return None

elif n<0:
print('Factorial is not defined for negative values.')
return None

elif n==0:
return 1

else:
return n * factorial(n-1)

☼

Programming for Business Computing

>>> factorial('Qoo')

Factorial is only defined for integers.

>>> factorial(-3)

Factorial is not defined for negative values.

>>> factorial(3.2)

Factorial is only defined for integers.

>>> factorial(4)

24

☼

2017-10-16 43

Now it’s working fine

Programming for Business Computing

def factorial(n):
if not isinstance(n, int):

print('Factorial is only defined for integers.')
return None

elif n<0:
print('Factorial is not defined for negative values.')
return None

elif n==0:
return 1

else:
return n * factorial(n-1)

• It is common to encounter problems when developing

your program.

• Using functions allow you to focus on a few functions that

are causing problems.

• Common possible causes:

• The input is wrong. Invalid arguments

• The logic of the function is wrong

• The output of the function is used in the wrong way

• How do we pin down the causes?

• Print out status

• Also used extensively when developing new programs

• Scaffolding  remove these redundant print command afterward.

• Using built-in debugging function (pdb). ☼

2017-10-16 44

Debugging

Programming for Business Computing

def factorial(n):

space = ' ' * (4*n)

print(space, 'factorial', n)

if not isinstance(n, int):

print('Factorial is only defined for integers.')

return None

elif n<0:

print('Factorial is not defined for negative values.')

return None

elif n==0:

print(space, 'returning 1')

return 1

else:

result = n * factorial(n-1)

print(space, 'returning', result)

return result

2017-10-16 45

Debugging: Print out status

Programming for Business Computing

☼

>>> factorial(4)

factorial 4

factorial 3

factorial 2

factorial 1

factorial 0

returning 1

returning 1

returning 2

returning 6

returning 24

2017-10-16 46

Debugging: Print out status

Programming for Business Computing

☼

THANK YOU!
Questions?

2017-10-16 Programming for Business Computing 47

